Un sistema de Numeración consta fundamentalmente de una serie de elementos que lo conforman, una serie de reglas que permite establecer operaciones y relaciones entre tales elementos. Por ello, puede decirse que un sistema de numeración es el conjunto de elementos (símbolos o números), operaciones y relaciones que por intermedio de reglas propias permite establecer el papel de tales relaciones y operaciones.
Sistemas Numéricos
Son conjuntos de dígitos usados para representar cantidades, así se tienen los sistemas de numeración decimal, binario, octal, hexadecimal, romano, etc. Los cuatro primeros se caracterizan por tener una base (número de dígitos diferentes: diez, dos, ocho, dieciséis respectivamente) mientras que el sistema romano no posee base y resulta más complicado su manejo tanto con números, así como en las operaciones básicas.
Los sistemas de numeración que poseen una base tienen la característica de cumplir con la notación posicional, es decir, la posición de cada número le da un valor o peso, así el primer dígito de derecha a izquierda después del punto decimal, tiene un valor igual a b veces el valor del dígito, y así el dígito tiene en la posición n un valor igual a: (bn) * A
Donde:
b = valor de la base del sistema
n = número del dígito o posición del mismo
A = dígito
Sistema de numeración Decimal; con distintos símbolos para las sucesivas potencias de 10 (1, 10,10…) que se representa escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo 10 tantas veces como decenas había en el número y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación esta basada en duplicaciones sucesivas y las división era el proceso inverso.
El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o arcas en forma de cuña cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10. Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como en las matemáticas egipcias. El número 60, sin embargo, se representaba con el mismo símbolo que el 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en el número completo. Por ejemplo, un número compuesto por el símbolo del 2, seguido por el del 27 y terminado con el de 10, representaba 2 x 602 + 27 x 60 + 10. Este mismo principio fue ampliado a la representación de fracciones. Este sistema, denominado sexagesimal (base 60) resultaba tan útil como el sistema decimal (base 10)
Sistema Binario
El sistema de numeración más simple que usa la notación posicional es el sistema de numeración binario. Este sistema, como su nombre lo indica, usa solamente dos dígitos (0,1).
Por su simplicidad y por poseer únicamente dos dígitos diferentes, el sistema de numeración binario se usa en computación para el manejo de datos e información. Normalmente al dígito cero se le asocia con cero voltios, apagado, desenergizado, inhibido (de la computadora) y el dígito 1 se asocia con +5, +12 volts, encendido, energizado (de la computadora) con el cual se forma la lógica positiva. Si la asociación es inversa, o sea el número cero se asocia con +5 volts o encendido y al número 1 se asocia con cero volts o apagado, entonces se genera la lógica negativa.
A la representación de un dígito binario se le llama bit (de la contracción binary digit) y al conjunto de 8 bits se le llama byte, así por ejemplo: 110 contiene 3 bits, 1001 contiene 4 y 1 contiene 1 bit. Como el sistema binario usa la notación posicional entonces el valor de cada dígito depende de la posición que tiene en el número, así por ejemplo el número 110101b es:
1*(20) + 0*(21) + 1*(22) + 0*(23) + 1*(24) + 1*(25) = 1 + 4 + 16 + 32 = 53d
La computadora está diseñada sobre la base de numeración binaria (base 2). Por eso este caso particular merece mención aparte. Siguiendo las reglas generales para cualquier base expuestas antes, tendremos que:
Existen dos dígitos (0 o 1) en cada posición del número.
Numerando de derecha a izquierda los dígitos de un número, empezando por cero, el valor decimal de la posición es 2n.
Por ejemplo,11012 (en base 2) quiere decir:
1*(23) + 1*(22) + 0*(21) + 1*(20) = 8 + 4 + 0 + 1 = 1310
Sistema Octal
El sistema de numeración octal es también muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0,1,2,3,4,5,6,7) y tienen el mismo valor que en el sistema de numeración decimal. Como el sistema de numeración octal usa la notación posicional entonces para el número 3452.32q tenemos:
2*(80) + 5*(81) + 4*(82) + 3*(83) + 3*(8-1) + 2*(8-2) = 2 + 40 + 4*64 + 64 + 3*512 + 3*0.125 + 2*0.015625 = 2 + 40 + 256 + 1536 + 0.375 + 0.03125 = 1834 + 40625dentonces, 3452.32q = 1834.40625d
El subíndice q indica número octal, se usa la letra q para evitar confusión entre la letra o y el número 0.
Sistema Hexadecimal
Un gran problema con el sistema binario es la verbosidad. Para representar el valor 20210 se requieren ocho dígitos binarios, la versión decimal sólo requiere de tres dígitos y por lo tanto los números se representan en forma mucho más compacta con respecto al sistema numérico binario. Desafortunadamente las computadoras trabajan en sistema binario y aunque es posible hacer la conversión entre decimal y binario, ya vimos que no es precisamente una tarea cómoda. El sistema de numeración hexadecimal, o sea de base 16, resuelve este problema (es común abreviar hexadecimal como hex. aunque hex. significa base seis y no base dieciséis). El sistema hexadecimal es compacto y nos proporciona un mecanismo sencillo de conversión hacia el formato binario, debido a esto, la mayoría del equipo de cómputo actual utiliza el sistema numérico hexadecimal. Como la base del sistema hexadecimal es 16, cada dígito a la izquierda del punto hexadecimal representa tantas veces un valor sucesivo potencia de 16, por ejemplo, el número 123416 es igual a:
1*163 + 2*162 + 3*161 + 4*160
lo que da como resultado:
4096 + 512 + 48 + 4 = 466010
Cada dígito hexadecimal puede representar uno de dieciséis valores entre 0 y 1510. Como sólo tenemos diez dígitos decimales, necesitamos inventar seis dígitos adicionales para representar los valores entre 1010 y 1510. En lugar de crear nuevos símbolos para estos dígitos, utilizamos las letras A a la F.
El sistema numérico decimal
El sistema de numeración decimal es el más usado, tiene como base el número 10, o sea que posee 10 dígitos (o símbolos) diferentes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). El sistema de numeración decimal fue desarrollado por los hindúes, posteriormente lo introducen los árabes en Europa, donde recibe el nombre de sistema de numeración decimal o arábigo. Si se aplica la notación posicional al sistema de numeración decimal entonces el dígito número n tiene el valor: (10n)* A
Este valor es positivo y es mayor o igual que uno si el dígito se localiza a la izquierda del punto decimal y depende del dígito A, en cambio el valor es menor que uno si el dígito se localiza a la derecha del punto decimal.
SISTEMA DE NUMERACION ROMANO
Este sistema de numeración se compone de siete letras del alfabeto romano; las cuales también son llamadas símbolos. Cada símbolo tiene un valor específico, I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 100
Los símbolos se clasifican en:
Primarios: I, X, C, M, los cuales se pueden repetir hasta tres veces.
Secundarios: V, L, D, los cuales no pueden repetirse.
Los números se forman en base a los principios de adición, sustracción y multiplicación.
REGLAS.
1. Si a la derecha de un símbolo está otro de menor valor, se suman los dos.
2. Si el símbolo I está a la izquierda de otro de mayor valor, se le resta al de mayor valor.
3. Una raya arriba de un número romano o parte de él, multiplica su valor por mil.